已知二次函数集合(1)若求函数的解析式;(2)若,且设在区间上的最大值、最小值分别为,记,求的最小值.
在平面直角坐标系中,抛物线y=x2上异于坐标原点O的两不同动点A、B满足AO⊥BO(如图所示).(Ⅰ)求△AOB的重心G(即三角形三条中线的交点)的轨迹方程;(Ⅱ)△AOB的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.
求标准方程:(1)若椭圆长轴长与短轴长之比为2,它的一个焦点是, 求椭圆的标准方程;(2)若双曲线的渐近线方程为,它的一个焦点是,求双曲线的标准方程。
如图, 直线y=x与抛物线y=x2-4交于A、B两点, 线段AB的垂直平分线与直线y=-5交于Q点. (1)求点Q的坐标;(2)当P为抛物线上位于线段AB下方(含A、B)的动点时, 求ΔOPQ面积的最大值.
已知抛物线y2=4ax(0<a<1=的焦点为F,以A(a+4,0)为圆心,|AF|为半径在x轴上方作半圆交抛物线于不同的两点M和N,设P为线段MN的中点.(1)求|MF|+|NF|的值;(2)是否存在这样的a值,使|MF|、|PF|、|NF|成等差数列?如存在,求出a的值,若不存在,说明理由.
已知抛物线C:,过C上一点M,且与M处的切线垂直的直线称为C在点M的法线.(1)若C在点M的法线的斜率为,求点M的坐标(x0,y0);(2)设P(-2,a)为C对称轴上的一点,在C上是否存在点,使得C在该点的法线通过点P?若有,求出这些点,以及C在这些点的法线方程;若没有,请说明理由.