已知偶函数满足:当时,,当时,.(Ⅰ).求表达式;(Ⅱ).若直线与函数的图像恰有两个公共点,求实数的取值范围; (Ⅲ).试讨论当实数满足什么条件时,直线的图像恰有个公共点,且这个公共点均匀分布在直线上.(不要求过程)
(本小题满分13分)已知抛物线的顶点在原点,焦点为,且过点. (1)求t的值;(2)若直线与抛物线只有一个公共点,求实数的值.
(本题满分13分)把一颗骰子投掷两次,记第一次出现的点数为,第二次出现的点数为(其中).(Ⅰ)若记事件“焦点在轴上的椭圆的方程为”,求事件的概率;(Ⅱ)若记事件“离心率为2的双曲线的方程为”,求事件的概率.
(本题满分13分) 为了了解某校高中部学生的体能情况,体育组决定抽样三个年级部分学生进行跳绳测试,并将所得的数据整理后画出频率分布直方图.已知图中从左到右的前三个小组的频率分别是0.1,0.3,0.4,第一小组的频数是5. (I) 求第四小组的频率和参加这次测试的学生人数; (II) 在这次测试中,学生跳绳次数的中位数落在第几小组内? (III) 参加这次测试跳绳次数在100次以上为优秀,试估计该校此年级跳绳成绩的优秀率是多少?
(本小题14分)
(图4)
椭圆:的离心率为,且过点.
(本小题12分)如图4:求的算法的程序框图。⑴标号①处填 。标号②处填 。⑵根据框图用直到型(UNTIL)语句编写程序。