如图,是边长为3的正方形,,,与平面所成的角为.(1)求二面角的的余弦值;(2)设点是线段上一动点,试确定的位置,使得,并证明你的结论.
(本小题满分12分) 某人有3枚钥匙,其中只有一枚房门钥匙,但忘记了开房门的是哪一枚,于是,他逐枚不重复地试开,问: (Ⅰ)恰好第三次打开房门锁的概率是多少? (Ⅱ)两次内打开房门的概率是多少?
(本小题满分12分) 已知,且. (Ⅰ)求的值; (Ⅱ)若,,求的值.[来源
(本小题满分14分) 设函数. (1)若函数在区间(-2,0)内恰有两个零点,求a的取值范围; (2)当a=1时,求函数在区间[t,t+3]上的最大值.
(本小题满分14分) 设双曲线C:(a>0,b>0)的一个焦点坐标为(,0),离心率, A、B是双曲线上的两点,AB的中点M(1,2). (1)求双曲线C的方程; (2)求直线AB方程; (3)如果线段AB的垂直平分线与双曲线交于C、D两点,那么A、B、C、D四点是否共圆?为什么?
(本小题满分14分) 已知数列的前项和为,且满足. (1)求,的值; (2)求; (3)设,数列的前项和为,求证:.