(本小题满分14分)设数列的前项和为,且 .(1)求数列的通项公式;(2)设,数列的前项和为,求证:.
(本小题共13分)根据以往的成绩记录,甲、乙两名队员射击击中目标靶的环数的频率分布情况如图所示 (1)求上图中的值; (2)甲队员进行一次射击,求命中环数大于7环的概率(频率当作概率使用); (3)由上图判断甲、乙两名队员中,哪一名队员的射击成绩更稳定(结论不需证明)
(本小题共13分)已知函数, (1)求实数的值; (2)求函数的最小正周期及单调增区间.
(本小题共13分)已知在等比数列中,,且是和的等差中项. (1)求数列的通项公式; (2)若数列满足,求的前项和.
(本小题共15分)已知函数对任意实数恒有且当x>0, (1)判断的奇偶性; (2)求在区间[-3,3]上的最大值; (3)解关于的不等式
(本小题共14分)已知函数(其中常数). (1)求函数的定义域及单调区间; (2)若存在实数,使得不等式成立,求的取值范围.