已知在△ABC中,∠ABC=90°,AB=3,BC=4.点Q是线段AC上的一个动点,过点Q作AC的垂线交线段AB(如图1)或线段AB的延长线(如图2)于点P.(1)当点P在线段AB上时,求证:△AQP∽△ABC;(2)当△PQB为等腰三角形时,求AP的长.
⑴ 在图①中,用阴影画出图形1沿图中虚线翻折后的图形。⑵ 在图②中,用阴影画出图形1绕图中的空心点旋转180°后的图形。
解方程:(每题5分,共10分)(1) (2)
如图,抛物线y=x2﹣2x+c的顶点A在直线l:y=x﹣5上.(1)求抛物线顶点A的坐标;(2)设抛物线与y轴交于点B,与x轴交于点C.D(C点在D点的左侧),试判断△ABD的形状;(3)是否存在一点P,使以点P、A.B.D为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.
某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日租金为400元时,可全部租出;当每 辆车的日租金每增加50元,未租出的车将增加1辆;公司平均每日的各项支出共4800元.设公司每日租出x辆车时,日收益为y元.(日收益=日租金收入一平均每日各项支出)(1)公司每日租出x辆车时,每辆车的日租金为 元(用含x的代数式表示);(2)当每日租出多少辆时,租赁公司日收益最大?最大是多少元?(3)当每日租出多少辆时,租赁公司的日收益不盈也不亏?
如图,以矩形OCPD的顶点O为原点,它的两条边所在的直线分别为x轴和y轴建立直角坐标系.以点P为圆心, PC为半径的⊙P与x轴的正半轴交于A、B两点,函数y=ax²+bx+4过A,B,C三点且AB=6. ⑴求⊙P的半径R的长; ⑵若点E在y轴上,且△ACE是等腰三角形,试写出所有点E的坐标;