如图,已知抛物线与直线交于点O(0,0),A(,12),点B是抛物线上O,A之间的一个动点,过点B分别作轴、轴的平行线与直线OA交于点C,E.(1)求抛物线的函数解析式;(2)若点C为OA的中点,求BC的长;(3)以BC,BE为边构造矩形BCDE,设点D的坐标为(,),求出,之间的关系式.
如图甲,已知A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,BF⊥AC。且已知AB=CD。试问DB平分EF能成立吗?请说明理由。若△DEC的边EC沿AC方向移动,其余条件不变,如图乙,上述结论是否仍成立?请说明理由。
如图,已知:在等边三角形ABC中,D、E分别在AB和AC上,且AD="CE" ,BE和CD相交于点P。说明△ACD≌△CEB求:∠BPD 的度数.
如图,滑杆在机械槽内运动,∠ACB为直角,已知滑杆AB 长2.5米,顶端A在AC 上运动,量得滑杆下端B距C点的距离为1.5米,当端点B向右移动0.5米时,求滑杆顶端A下滑多少米?
如图,在△ABC中,∠B=∠C, AD是△ABC的BC边上的高,DE∥AB,交AC于点E,判断△ADE是不是等腰三角形,并说明理由。
我们在七年级(下)中学习了三角形的内角和等于180°,当时,我们是通过拼图的方法得到的。现在你能否利用平行线的性质来得出“三角形的内角和等于180°”?请你添上辅助线并把过程写下来。