已知关于的一元二次方程有两个实数根和.(1)求实数的取值范围;(2)当时,求的值.
在一个可以改变体积的容器内有一定质量的二氧化碳气体,当改变容器的体积时,气体的密度也会随之改变,密度与体积之间的函数关系如图所示,。(1)通过图象你能得到什么信息(至少写一条)?(2)写出与之间函数关系式;(3)求当时,二氧化碳的密度。
先化简代数式,请你取一个的值,求出此时代数式的值.
如图,经过原点的抛物线与轴的另一个交点为A.过点作直线轴于点M,交抛物线于点B.记点B关于抛物线对称轴的对称点为C(B、C不重合).连结CB,CP。 当时,求点A的坐标及BC的长; 当时,连结CA,问为何值时? 过点P作且,问是否存在,使得点E落在坐标轴上?若存在,求出所有满足要求的的值,并定出相对应的点E坐标;若不存在,请说明理由。
温州享有“中国笔都”之称,其产品畅销全球,某制笔企业欲将件产品运往A,B,C三地销售,要求运往C地的件数是运往A地件数的2倍,各地的运费如图所示。设安排件产品运往A地。当时①根据信息填表:
②若运往B地的件数不多于运往C地的件数,总运费不超过4000元,则有哪几种运输方案?若总运费为5800元,求的最小值。
如图,△ABC中,∠ACB=90°,D是边AB上的一点,且∠A=2∠DCB.E是BC上的一点,以EC为直径的⊙O经过点D。求证:AB是⊙O的切线;若CD的弦心距为1,BE=ED.求BD的长.