如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP= ,CQ=时,P、Q两点间的距离 (用含的代数式表示).
用如图所示的两个转盘进行“配紫色”游戏(红色与蓝色配成紫色)。请你制作树状图或用列表的方法求出游戏者配紫色的概率.
如图,P是∠BAC内的一点,PE⊥AB,PF⊥AC,垂足分别为点E,F,AE=AF. 求证:(1)PE=PF; (2)点P在∠BAC的角平分线上.
在班级的联欢晚会上,有A、B、C三名同学站在如图所示的三个位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,请你用尺规作图作出此凳的位置.(不写作法,保留作图痕迹)
解方程:
表2是从表1中截取的一部分,则a= ________.