如图:在平面直角坐标系中A(2,6),B(-1,1),C(4,3).在下图中作出 △ABC关于y轴对称图形△A1B1C1.
特例感知
(1)如图1,对于抛物线,,,下列结论正确的序号是 ;
①抛物线,,都经过点;
②抛物线,的对称轴由抛物线的对称轴依次向左平移个单位得到;
③抛物线,,与直线的交点中,相邻两点之间的距离相等.
形成概念
(2)把满足为正整数)的抛物线称为“系列平移抛物线”.
知识应用
在(2)中,如图2.
①“系列平移抛物线”的顶点依次为,,,,,用含的代数式表示顶点的坐标,并写出该顶点纵坐标与横坐标之间的关系式;
②“系列平移抛物线”存在“系列整数点(横、纵坐标均为整数的点)”:,,,,,其横坐标分别为,,,,为正整数),判断相邻两点之间的距离是否都相等,若相等,直接写出相邻两点之间的距离;若不相等,说明理由.
③在②中,直线分别交“系列平移抛物线”于点,,,,,连接,,判断,是否平行?并说明理由.
在图1,2,3中,已知,,点为线段上的动点,连接,以为边向上作菱形,且.
(1)如图1,当点与点重合时, ;
(2)如图2,连接.
①填空: (填“”,“ “,“” ;
②求证:点在的平分线上;
(3)如图3,连接,,并延长交的延长线于点,当四边形是平行四边形时,求的值.
数学活动课上,张老师引导同学进行如下探究:
如图1,将长为的铅笔斜靠在垂直于水平桌面的直尺的边沿上,一端固定在桌面上,图2是示意图.
活动一
如图3,将铅笔绕端点顺时针旋转,与交于点,当旋转至水平位置时,铅笔的中点与点重合.
数学思考
(1)设,点到的距离.
①用含的代数式表示:的长是 ,的长是 ;
②与的函数关系式是 ,自变量的取值范围是 .
活动二
(2)①列表:根据(1)中所求函数关系式计算并补全表格
6
5
4
3.5
3
2.5
2
1
0.5
0
0.55
1.2
1.58
2.47
4.29
5.08
②描点:根据表中数值,继续描出①中剩余的两个点.
③连线:在平面直角坐标系中,请用平滑的曲线画出该函数的图象.
(3)请你结合函数的图象,写出该函数的两条性质或结论.
图1是一台实物投影仪,图2是它的示意图,折线表示固定支架,垂直水平桌面于点,点为旋转点,可转动,当绕点顺时针旋转时,投影探头始终垂直于水平桌面,经测量:,,,.(结果精确到.
(1)如图2,,.
①填空: .
②求投影探头的端点到桌面的距离.
(2)如图3,将(1)中的向下旋转,当投影探头的端点到桌面的距离为时,求的大小.
(参考数据:,,,
如图1,为半圆的直径,点为圆心,为半圆的切线,过半圆上的点作交于点,连接.
(1)连接,若,求证:是半圆的切线;
(2)如图2,当线段与半圆交于点时,连接,,判断和的数量关系,并证明你的结论.