已知:如图,点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF.求证:⑴△ABC≌△DEF;⑵BE=CF.
小明有2枚黑棋子,小亮有2枚白棋子,两人随机将4枚棋子放在下图的格子中(每格只放一枚)。若4枚棋子黑白相间排列,就算小明赢,否则就算小亮赢.这个游戏对双方公平吗?请说明理由.
“五一”期间,某超市贴出促销海报,内容如图1.在商场活动期间,王莉和同组同学随机调查了部分参与活动的顾客,统计了200人次的摸奖情况,绘制成如图2的频数分布直方图.(1)补齐频数分布直方图;(2)求所调查的200人次摸奖的获奖率;(3)若超市每天约有2000人次摸奖,请估算商场一天送出的购物券总金额是多少元?
如图,在等腰梯形中,为底的中点,连结、.求证:.
已知二次函数y=x2+bx+c与x轴交于A(-1,0)、B(1,0)两点.(1)求这个二次函数的关系式;(2)若有一半径为r的⊙P,且圆心P在抛物线上运动,当⊙P与两坐标轴都相切时,求半径r的值.(3)半径为1的⊙P在抛物线上,当点P的纵坐标在什么范围内取值时,⊙P与y轴相离、相交?
如图,用长为32米的篱笆围成一个外形为矩形的花圃,花圃的一边利用原有墙,中间用2道篱笆割成3个小矩形.已知原有墙的最大可利用长度为15米,花圃的面积为S平方米,平行于原有墙的一边BC长为x米.(1)求S关于x的函数关系式;(2)当围成的花圃面积为60平方米时,求AB的长;(3)能否围成面积比60平方米更大的花圃?如果能,那么最大的面积是多少?如果不能,请说明理由.