已知函数,(Ⅰ)求函数的单调区间;(Ⅱ)若函数在区间内的最小值为,求的值.(参考数据)
设函数的定义域为集合,函数的定义域为集合.求:(1)集合,;(2)集合.
已知函数,.(1)时,证明:;(2),若,求的取值范围.
如图,在平面直角坐标系中,离心率为的椭圆()的左顶点为,过原点的直线(与坐标轴不重合)与椭圆交于,两点,直线,分别与轴交于,两点.当直线斜率为时,.(1)求椭圆的标准方程;(2)试问以为直径的圆是否经过定点(与直线的斜率无关)?请证明你的结论.
如图,在斜三棱柱中,侧面与侧面都是菱形,,.(1)求证:;(2)若,求二面角的正弦值.
现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机抽调了人,他们月收入的频数分布及对“楼市限购令”赞成人数如下表.
(I)由以上统计数据填下面列联表并问是否有%的把握认为“月收入以为分界点”对“楼市限购令”的态度有差异;
(II)若对月收入在,的被调查人中各随机选取两人进行追踪调查,记选中的人中不赞成“楼市限购令”人数为,求随机变量的分布列及数学期望. 参考数据: