如图,在平面直角坐标系中,离心率为的椭圆()的左顶点为,过原点的直线(与坐标轴不重合)与椭圆交于,两点,直线,分别与轴交于,两点.当直线斜率为时,.(1)求椭圆的标准方程;(2)试问以为直径的圆是否经过定点(与直线的斜率无关)?请证明你的结论.
在极坐标系中,已知圆的圆心,半径 (Ⅰ)求圆的极坐标方程; (Ⅱ)若,直线的参数方程为(为参数),直线交圆于两点,求弦长的取值范围
如图,是圆的直径,、在圆上,、的延长线交直线于点、,求证: (Ⅰ)直线是圆的切线; (Ⅱ)
设函数(为常数) (Ⅰ)=2时,求的单调区间; (Ⅱ)当时,,求的取值范围
已知椭圆的右焦点为,上顶点为B,离心率为,圆与轴交于两点 (Ⅰ)求的值; (Ⅱ)若,过点与圆相切的直线与的另一交点为,求的面积
如图,四边形是正方形,,,, (Ⅰ)求证:平面平面; (Ⅱ)求三棱锥的高