已知函数f(x)的导函数为f ′(x),且对任意x>0,都有f ′(x)>.(Ⅰ)判断函数F(x)=在(0,+∞)上的单调性;(Ⅱ)设x1,x2∈(0,+∞),证明:f(x1)+f(x2)<f(x1+x2);(Ⅲ)请将(Ⅱ)中的结论推广到一般形式,并证明你所推广的结论.
(本小题满分14分)若集合具有以下性质: ①,; ②若,则,且时,. 则称集合是“好集”. (Ⅰ)分别判断集合,有理数集是否是“好集”,并说明理由; (Ⅱ)设集合是“好集”,求证:若,则; (Ⅲ)对任意的一个“好集”,分别判断下面命题的真假,并说明理由. 命题:若,则必有; 命题:若,且,则必有;
(本小题满分13分)已知椭圆:的右焦点为,离心率为. (Ⅰ)求椭圆的方程及左顶点的坐标; (Ⅱ)设过点的直线交椭圆于两点,若的面积为,求直线的方程.
(本小题满分13分)已知函数,其中是常数. (Ⅰ)当时,求在点处的切线方程; (Ⅱ)求在区间上的最小值.
(本小题满分13分)在四棱锥中,底面是菱形,. (Ⅰ)若,求证:平面; (Ⅱ)若平面平面,求证:; (Ⅲ)在棱上是否存在点(异于点)使得∥平面,若存在,求的值;若不存在,说明理由.
(本小题满分13分)为加强大学生实践、创新能力和团队精神的培养,促进高等教育教学改革,教育部门主办了全国大学生智能汽车竞赛. 该竞赛分为预赛和决赛两个阶段,参加决赛的队伍按照抽签方式决定出场顺序.通过预赛,选拔出甲、乙和丙三支队伍参加决赛. (Ⅰ)求决赛中甲、乙两支队伍恰好排在前两位的概率; (Ⅱ)求决赛中甲、乙两支队伍出场顺序相邻的概率.