已知中,角、、的对边分别为,且.(1)求角的大小;(2)设向量,且,求的值.
已知等差数列的公差大于0,且、是方程的两根.数列的前项和为,满足(Ⅰ)求数列,的通项公式;(Ⅱ)设数列的前项和为,记.若为数列中的最大项,求实数的取值范围.
某公司向市场投放三种新型产品,经调查发现第一种产品受欢迎的概率为,第二、第三种产品受欢迎的概率分别为,且不同种产品是否受欢迎相互独立.记为公司向市场投放三种新型产品受欢迎的数量,其分布列为
(Ⅰ)求该公司至少有一种产品受欢迎的概率;(Ⅱ)求的值;(Ⅲ)求数学期望.
如图,四棱锥的底面是矩形,,且侧面是正三角形,平面平面,(Ⅰ)求证:;(Ⅱ)在棱上是否存在一点,使得二面角的大小为45°.若存在,试求的值,若不存在,请说明理由.
已知函数.(1)若,求的值;(2)设△三内角所对边分别为且,求在上的值域.
已知函数(Ⅰ)若函数f(x)在[1,2]上是减函数,求实数a的取值范围;(Ⅱ)令g(x)= f(x)-x2,是否存在实数a,当x∈(0,e](e是自然常数)时,函数g(x)的最小值是3,若存在,求出a的值;若不存在,说明理由;(Ⅲ)当x∈(0,e]时,证明: