若函数满足:在定义域内存在实数,使(k为常数),则称“f(x)关于k可线性分解”.(Ⅰ)函数是否关于1可线性分解?请说明理由;(Ⅱ)已知函数关于可线性分解,求的取值范围;(Ⅲ)证明不等式:.
(本小题满分10分)选修4—5:不等式选讲已知函数.(1)若当时,恒成立,求实数的取值;(2)当时,求证:.
(本小题满分10分)选修4—4:坐标系与参数方程在平面直角坐标系中,以坐标原点为极点,轴的非负半轴为极轴,建立极坐标系.曲线的极坐标方程是,直线的参数方程是.(1)求直线的直角坐标方程和曲线的参数方程;(2)求曲线上的动点到直线的距离的范围.
(本小题满分10分)选修4—1:几何证明选讲如图,在直径的延长线上任取一点,过点做直线与交于点、,在上取一点,使,连接,交于.(1)求证:、、、四点共圆;(2)若,求的值.
(本小题满分12分)设函数.(1)若曲线在点处的切线与轴垂直,求的极值;(2)当时,若不等式在区间上有解,求实数的取值范围.
(本小题满分12分)已知椭圆的离心率,左、右焦点分别是,以原点为圆心,椭圆的短半轴为半径的圆与直线相切.(1)求椭圆的标准方程;(2)设为椭圆上不在轴上的一个动点,过点作的平行线交椭圆与两个不同的点,记,令,求的最大值.