如图,游客在景点处下山至处有两条路径.一条是从沿直道步行到,另一条是先从沿索道乘缆车到,然后从沿直道步行到.现有甲、乙两位游客从处下山,甲沿匀速步行,速度为.在甲出发后,乙从乘缆车到,在处停留后,再从匀速步行到.假设缆车匀速直线运动的速度为,索道长为,经测量,.(1)求山路的长;(2)假设乙先到,为使乙在处等待甲的时间不超过分钟,乙步行的速度应控制在什么范围内?
已知焦点在X轴上的椭圆C为.,F1、F2分别是椭圆C的左、右焦点,离心率e=.(I )求椭圆C的方程;(II) 设点Q的坐标为(1,0),椭圆上是否存在一点P,使得直线都与以Q为圆心的一个圆相切,如存在,求出P点坐标及圆的方程,如不存在,请说明理由.
若数列满足:(I) 证明数列是等差数列;.(II) 求使成立的最小的正整数n
如图1所示,在边长为12的正方形中,点B、C在线段AD上,且AB = 3,BC = 4,作分别交于点B,P,作分别交于点,将该正方形沿折叠,使得与重合,构成如图2所示的三棱柱(I )求证:平面;(II)求多面体的体积.
2011.年广州亚运会的一组志愿者全部通晓中文,并且每个志愿者还都通晓英语、日语和韩语中的一种(但无人通晓两种外语).已知从中任抽一人,其通晓中文和英语的概率为,通晓中文和日语的概率为.若通晓中文和韩语的人数不超过3人.(I )求这组志愿者的人数;(II)现从这组志愿者中选出通晓英语的志愿者1名,通晓韩语的志愿者1名,若甲通晓英语,乙通晓韩语,求甲和乙不全被选中的概率.
己知函数.(I )若,,求的值;(II)求函数的最大值和单调递增区间.