如图,游客在景点处下山至处有两条路径.一条是从沿直道步行到,另一条是先从沿索道乘缆车到,然后从沿直道步行到.现有甲、乙两位游客从处下山,甲沿匀速步行,速度为.在甲出发后,乙从乘缆车到,在处停留后,再从匀速步行到.假设缆车匀速直线运动的速度为,索道长为,经测量,.(1)求山路的长;(2)假设乙先到,为使乙在处等待甲的时间不超过分钟,乙步行的速度应控制在什么范围内?
已知曲线与在第一象限内的交点为P. (1)求过点且与曲线相切的直线方程; (2)求与曲线所围图形的面积.
已知函数处都取得极值. (1)求的值; (2)求的单调区间
已知在上是单调增函数,则的最大值是( )
已知,若存在互不相等的正整数…,使得…同时小于,则记为满足条件的的最大值. (1)求的值; (2)对于给定的正整数, (ⅰ)当时,求的解析式; (ⅱ)当时,求的解析式.
如图,在直三棱柱ABC—A1B1C1中,AC = 3,BC = 4,AB = 5,AA1 = 4. (1)设,异面直线AC1与CD所成角的余弦值为,求的值; (2)若点D是AB的中点,求二面角D—CB1—B的余弦值.