和是等边三角形,求证:.
某校开展了以“人生观、价值观”为主题的班队活动,活动结束后,九(2)班数学兴趣小组提出了5个主要观点并在本班50名学生中进行了调查(要求每位同学只选自己最认可的一项观点),并制成了如下扇形统计图.(1)该班学生选择“互助”观点的有 人,在扇形统计图中,“和谐”观点所在扇形区域的圆心角是 度;(2)如果该校有1500名九年级学生,利用样本估计选择“感恩”观点的九年级学生约有__420____人.(3)如果数学兴趣小组在这5个主要观点中任选两项观点在全校学生中进行调查,求恰好选到“和谐”和“感恩”观点的概率.(用树状图或列表法分析解答)
在一次对某水库大坝设计中,李设计师对修建一座长80米的水库大坝提出了以下方案:大坝的横截面为等腰梯形,如图,∥,坝高10m,迎水坡面的坡度,审核组专家看后,从力学的角度对此方案提出了建议,李设计师决定在原方案的基础上,将迎水坡面的坡度进行修改,修改后的迎水坡面的坡度.(1)求原方案中此大坝迎水坡的长(结果保留根号)(2)如果方案修改前后,修建大坝所需土石方总体积不变,在方案修改后,若坝顶沿方向拓宽,求坝底将会沿方向加宽多少米?
解不等式组:并把它的解集在数轴上表示出来.
计算:
如图1,在等腰梯形ABCD中,AB∥CO,E是AO的中点,过点E作EF∥OC交BC于F,AO=4,OC=6,∠AOC=60°.现把梯形ABCO放置在平面直角坐标系中,使点O与原点重合,OC在x轴正半轴上,点A、B在第一象限内。 (1) 求点E的坐标; (2) 点P为线段EF上的一个动点,过点P作PM⊥EF交OC于点M,过M作MN∥AO交折线ABC于点N, 连结PN。设PE=x.△PMN的面积为S。 ① 求S关于x的函数关系式; ② △PMN的面积是否存在最大值,若不存在,请说明理由。若存在,求出面积的最大值; (3)另有一直角梯形EDGH(H在EF上,DG落在OC上,∠EDG=90°,且DG=3,HG∥BC)。现在开始操作:固定等腰梯形ABCO,将直角梯形EDGH以每秒1个单位的速度沿OC方向向右移动,直到点D与点C重合时停止(如图2)。设运动时间为t秒,运动后的直角梯形为E′D′G′H′;探究:在运动过程中,等腰梯形ABCO与直角梯形E′D′G′H′重合部分的面积y与时间t的函数关系式。