设函数.(1)当时,证明:函数不是奇函数;(2)设函数是奇函数,求与的值;(3)在(2)条件下,判断并证明函数的单调性,并求不等式的解集.
在四棱锥中,底面是边长为的菱形,,面,,,分别为,的中点. (Ⅰ)求证:面; (Ⅱ)求点到面的距离.
若函数,的定义域都是集合,函数和的值域分别为和. (Ⅰ)若,求; (Ⅱ)若,且,求实数m的值.
已知椭圆,椭圆的右焦点为F. (1)求过点F且斜率为1的直线被椭圆截得的弦长. (2)求以M(1,1)为中点的椭圆的弦所在的直线方程. (3)过椭圆的右焦点F的直线l交椭圆于A,B,求弦 AB的中点P的轨迹方程.
已知正四棱柱中,. (Ⅰ)求证:; (Ⅱ)求钝二面角的余弦值; (Ⅲ)在线段上是否存在点,使得平面平面,若存在,求出的值;若不存在, 请说明理由.
已知动圆与圆相切,且与圆相内切,记圆心的轨迹为曲线,求曲线的方程.