已知抛物线与双曲线有公共焦点,点是曲线在第一象限的交点,且.(1)求双曲线的方程;(2)以双曲线的另一焦点为圆心的圆与直线相切,圆.过点作互相垂直且分别与圆、圆相交的直线和,设被圆截得的弦长为,被圆截得的弦长为,问:是否为定值?如果是,请求出这个定值;如果不是,请说明理由.
△ABC的三个顶点A(-3,0),B(2,1),C(-2,3).求: (Ⅰ)BC边上中线AD所在直线的方程; (Ⅱ)BC边上高线AH所在直线的方程.
某几何体的三视图及其尺寸如下,求该几何体的表面积和体积.
已知椭圆:=1(a>b>0)与双曲线有公共焦点,且离心率为.分别是椭圆的左、右顶点.点是椭圆上位于轴上方的动点.直线分别与直线:交于两点. (I)求椭圆的方程; (II)当线段的长度最小时,在椭圆上是否存在点,使得的面积为?若存在,求出的坐标,若不存在,请说明理由.
如右图,在平面直角坐标系中,已知“葫芦”曲线由圆弧与圆弧相接而成,两相接点均在直线上.圆弧所在圆的圆心是坐标原点,半径为;圆弧过点. (I)求圆弧的方程; (II)已知直线:与“葫芦”曲线交于两点.当时,求直线的方程.
如图,在几何体中,四边形为平行四边形,且面面,,且,为中点. (Ⅰ)证明:平面; (Ⅱ)求直线与平面所成角的正弦值.