已知抛物线与双曲线有公共焦点,点是曲线在第一象限的交点,且.(1)求双曲线的方程;(2)以双曲线的另一焦点为圆心的圆与直线相切,圆.过点作互相垂直且分别与圆、圆相交的直线和,设被圆截得的弦长为,被圆截得的弦长为,问:是否为定值?如果是,请求出这个定值;如果不是,请说明理由.
(本小题满分12分)一个多面体的直观图和三视图如图所示,其中、分别是、的中点. (1)求证:平面 (2)在线段上(含、端点)确定一点,使得平面,并给出证明; (3)一只小飞虫在几何体内自由飞,求它飞入几何体内的概率.
(本小题满分12分)已知函数的最小正周期为,当时,函数的最小值为0。 (1)求函数的表达式; (2)在△,若的值。
(本小题满分12分)某市调研考试后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为.
(1)请完成上面的列联表; (2)根据列联表的数据,若按99%的可靠性要求,能否认为“成绩与班级有关系”; (3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到9号或10号的概率. 附:)
(本小题满分14分)已知函数,. (Ⅰ)若,求函数的极值; (Ⅱ)设函数,求函数的单调区间; (Ⅲ)若在区间上不存在,使得成立,求实数的取值范围.
(本题满分13分) 如图,是离心率为的椭圆,:()的左、右焦点,直线:将线段分成两段,其长度之比为1 :3.设是上的两个动点,线段的中点在直线上,线段的中垂线与交于两点. (Ⅰ) 求椭圆C的方程; (Ⅱ) 是否存在点,使以为直径的圆经过点,若存在,求出点坐标,若不存在,请说明理由.