已知椭圆:=1(a>b>0)与双曲线有公共焦点,且离心率为.分别是椭圆的左、右顶点.点是椭圆上位于轴上方的动点.直线分别与直线:交于两点.(I)求椭圆的方程;(II)当线段的长度最小时,在椭圆上是否存在点,使得的面积为?若存在,求出的坐标,若不存在,请说明理由.
(本小题满分12分)某大学餐饮中心为了了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调 查结果如下表所示: (Ⅰ)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”; (Ⅱ)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率. 附:.
(本小题满分12分)设数列的各项均为正数,它的前项和为,点在函数的图像上;数列满足,其中. (Ⅰ)求数列和的通项公式; (Ⅱ)设,求证:数列的前项和.
选修4-5:不等式证明选讲 已知. (1)解不等式; (2)若关于的不等式对任意的恒成立,求的取值范围.
选修4-4:坐标系与参数方程 在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系.已知直线,曲线(是参数). 求直线的直角坐标方程与曲线的普通方程; 若点P在直线上,Q在曲线上,求的最小值.
已知.(1)求函数的单调区间; (2)若关于的方程有实数解,求实数的取值范围; (3)当时,求证:.