如图,已知点,直线与函数的图象交于点,与轴交于点,记的面积为.(Ⅰ)求函数的解析式;(Ⅱ)求函数的最大值.
(本小题满分12分)如图,在四棱锥中,底面是正方形,底面,, 点是的中点,,且交于点. (Ⅰ)求证:平面; (Ⅱ)求证:平面⊥平面; (Ⅲ)求二面角的余弦值.
(本小题满分12分)已知等比数列满足:,且是的等差中项. (Ⅰ)求数列的通项公式; (Ⅱ)若数列{an}是单调递增的,令,,求使成立的正整数的最小值.
(本小题满分12分) 已知向量,设函数. (Ⅰ)求在区间上的零点; (Ⅱ)在△中,角的对边分别是,且满足,求的取值范围.
(本小题满分12分)已知圆,直线 (1)求证:对,直线与圆总有两个不同的交点A、B; (2)求弦AB的中点M的轨迹方程,并说明其轨迹是什么曲线; (3)若定点P(1,1)满足,求直线的方程。
(本小题满分10分)如图,直角梯形中,,,平面平面,为等边三角形,分别是的中点,. (1)证明:; (2)证明:平面; (3)若,求几何体的体积.