已知是二次函数,是它的导函数,且对任意的恒成立 (Ⅰ)求的解析式;(Ⅱ)设,曲线在点处的切线为与坐标轴围成的三角形面积为,求的最小值。
(1)求的周期; (2)求在上的减区间; (3)若,,求的值
于定义在D上的函数,若同时满足①存在闭区间,使得任取,都有(是常数);②对于D内任意,当时总有;则称为“平底型”函数.(1)判断 ,是否是“平底型”函数?简要说明理由;(2)设是(1)中的“平底型”函数,若,()对一切恒成立,求实数的范围;(3)若是“平底型”函数,求和的值.
如图△ABC为正三角形,边长为2,以点A为圆心,1为半径作圆.(1)若,求;(2)PQ为圆A的任意一条直径,求的最大值.
已知集合A=,集合B=.(1)求;(2)若集合,且,求m的取值范围.
已知.(1)求的值;(2)当时,求的值.