交5元钱,可以参加一次摸奖,一袋中有同样大小的球10个,其中8个标有1元钱,2个标有5元钱,摸奖者只能从中任取2个球,他所得奖励是所抽2球的钱数之和,求抽奖人所得钱数的分布列.
已知点是离心率为的椭圆:上的一点,斜率为的直线交椭圆于、两点,且、、三点不重合. (1)求椭圆的方程; (2)的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由?
已知四棱锥的底面是菱形.,为的中点. (1)求证:∥平面; (2)求证:平面平面.
已知等差数列满足. (Ⅰ)求; (Ⅱ)数列满足, 为数列的前项和,求.
各项均为正数的等差数列首项为1,且成等比数列, (1)求、通项公式; (2)求数列前n项和; (3)若对任意正整数n都有成立,求范围.
已知椭圆E:()离心率为,上顶点M,右顶点N,直线MN与圆相切,斜率为k的直线l经过椭圆E在正半轴的焦点F,且交E于A、B不同两点. (1)求E的方程; (2)若点G(m,0)且| GA|=| GB|,,求m的取值范围.