省少年篮球队要从甲、乙两所体校选拔队员。现将这两所体校共20名学生的身高绘制成如下茎叶图(单位:cm):若身高在180cm以上(包括180cm)定义为“高个子”,身高在180cm以下(不包括180cm)定义为“非高个子”.(1)用分层抽样的方法从“高个子”和“非高个子”中抽取5人,如果从这5人中随机选2人,那么至少有一人是“高个子”的概率是多少?(2)从两队的“高个子”中各随机抽取1人,求恰有1人身高达到190cm的概率.
已知动点P到点A(-2,0)与点B(2,0)的斜率之积为-,点P的轨迹为曲线C. (1)求曲线C的方程; (2)若点Q为曲线C上的一点,直线AQ,BQ与直线x=4分别交于M,N两点,直线BM与椭圆的交点为D.求证,A,D,N三点共线.
在平面直角坐标系xOy中,动点P到直线l:x=2的距离是到点F(1,0)的距离的倍. (1)求动点P的轨迹方程; (2)设直线FP与(1)中曲线交于点Q,与l交于点A,分别过点P和Q作l的垂线,垂足为M,N,问:是否存在点P使得△APM的面积是△AQN面积的9倍?若存在,求出点P的坐标;若不存在,说明理由.
已知椭圆C1:=1,椭圆C2以C1的短轴为长轴,且与C1有相同的离心率. (1)求椭圆C2的方程; (2)设直线l与椭圆C2相交于不同的两点A、B,已知A点的坐标为(-2,0),点Q(0,y0)在线段AB的垂直平分线上,且=4,求直线l的方程.
在数列{an}中,a1=1,{an}的前n项和Sn满足2Sn=an+1. (1)求数列{an}的通项公式; (2)若存在n∈N*,使得λ≤,求实数λ的最大值.
已知{an}为等差数列,且a2=-1,a5=8. (1)求数列{|an|}的前n项和; (2)求数列{2n·an}的前n项和.