(本小题满分14分)如图,F1、F2分别是椭圆的左右焦点,M为椭圆上一点,MF2垂直于轴,椭圆下顶点和右顶点分别为A,B,且(1)求椭圆的离心率;(2)过F2作OM垂直的直线交椭圆于点P,Q,若,求椭圆方程。
已知:以点C (t, )(t∈R , t≠ 0)为圆心的圆与轴交于点O, A,与y轴交于点O, B,其中O为原点. (1)求证:△OAB的面积为定值; (2)设直线y = –2x+4与圆C交于点M, N,若OM = ON,求圆C的方程.
已知函数 (1)当恒成立,求实数m的最大值; (2)在曲线上存在两点关于直线对称,求t的取值范围; (3)在直线的两条切线l1、l2, 求证:l1⊥l2
已知抛物线与直线y=x+2相交于A、B两点,过A、B两点的切线分别为和。 (1)求A、B两点的坐标; (2)求直线与的夹角。
设,求函数的单调区间.
求证下列不等式 (1) (2) (3)