(本小题满分14分)如图,F1、F2分别是椭圆的左右焦点,M为椭圆上一点,MF2垂直于轴,椭圆下顶点和右顶点分别为A,B,且(1)求椭圆的离心率;(2)过F2作OM垂直的直线交椭圆于点P,Q,若,求椭圆方程。
在直角坐标平面上给定一曲线y2=2x,(1)设点A的坐标为,求曲线上距点A最近的点P的坐标及相应的距离|PA|.(2)设点A的坐标为(a,0),a∈R,求曲线上的点到点A距离的最小值dmin,并写出dmin=f(a)的函数表达式.
已知等腰梯形PDCB中(如图),PB=3,DC=1,PD=BC=,A为PB边上一点,且PA=1,将△PAD沿AD折起,使平面PAD⊥平面ABCD(如图).(1)证明:平面PAD⊥平面PCD.(2)试在棱PB上确定一点M,使截面AMC把几何体分成的两部分VPDCMA∶VMACB=2∶1.(3)在M满足(2)的情况下,判断直线PD是否平行平面AMC.
如图,AB是圆O的直径,PA垂直圆O所在的平面,C是圆O上的点.(1)求证:平面PAC⊥平面PBC.(2)设Q为PA的中点,G为△AOC的重心,求证:QG∥平面PBC.
如图,AB=AD,∠BAD=90°,M,N,G分别是BD,BC,AB的中点,将等边△BCD沿BD折叠到△BC′D的位置,使得AD⊥C′B.(1)求证:平面GNM∥平面ADC′.(2)求证:C′A⊥平面ABD.
如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1,且E是BC中点.(1)求证:A1B∥平面AEC1.(2)求证:B1C⊥平面AEC1.