设正有理数是的一个近似值,令.(Ⅰ)若,求证:;(Ⅱ)比较与哪一个更接近,请说明理由.
(本小题满分16分) 如图,已知抛物线的焦点为,是抛物线上横坐标为8且位于轴上方的点. 到抛物线准线的距离等于10,过作垂直于轴,垂足为,的中点为(为坐标原点). (Ⅰ)求抛物线的方程; (Ⅱ)过作,垂足为,求点的坐标; (Ⅲ)以为圆心,4为半径作圆,点是轴上的一个动点,试讨论直线与圆的位置关系.
(本小题满分14分) 经市场调查,某商场的一种商品在过去的一个月内(以30天计)销售价格(元)与时间(天)的函数关系近似满足(为正常数),日销售量(件)与时间(天)的函数关系近似满足,且第25天的销售金额为13000元. (Ⅰ)求的值; (Ⅱ)试写出该商品的日销售金额关于时间的函数关系式; (Ⅲ)该商品的日销售金额的最小值是多少?
(本小题满分14分) 如图,在四棱锥P—ABCD中,底面ABCD是正方形,侧面PAD⊥底面ABCD,且PA⊥PD,E、F分别为PC、BD的中点。 (I)求证:直线EF//平面PAD; (II)求证:直线EF⊥平面PDC。
(本小题满分14分) 在 (I)求的值; (II)求的值.
设函数,其中 (Ⅰ)若,求曲线在点处的切线方程; (Ⅱ)是否存在负数,使对一切正数都成立?若存在,求出的取值范围;若不存在,请说明理由。