设函数,其中角的顶点与坐标原点重合,始边与轴非负半轴重合,终边经过点,且.(1)若点的坐标为,求的值;(2)若点为平面区域上的一个动点,试确定角的取值范围,并求函数的最小值和最大值.
某高速公路某施工工地需调运建材100吨,可租用装载的卡车和农用车分别为10辆和20辆,若每辆卡车装载8吨,运费960元,每辆农用车装载2.5吨,运费360元,问两种车各租用多少辆时,才能一次性装完且总费用最低?
如图为函数y=Asin(ωx+φ)(A>0,ω>0)的图象的一部分, 试求该函数的一个解析式.
已知数列满足, (1)求;(2)判断20是不是这个数列的项,并说明理由; (3)求这个数列前n项的和。
解不等式>1的解集。
已知是公差不为零的等差数列,,且,,成等比数列. (Ⅰ)求数列的通项公式; (Ⅱ)若,求数列的前项和.