已知且,数列满足,,(),令,⑴求证: 是等比数列;⑵求数列的通项公式;⑶若,求的前项和.
已知定直线:,,为极点,为上的任意一点连接,以为一边作正三角形。,,三点按顺时针方向排列,求当点在上运动时点的极坐标方程,并化成直角坐标方程。
数列中,,,其中>0,对于函数 (n≥2)有.(1)求数列的通项公式;(2)若,, +,求证:
已知函数f(x)=ln(1+x)-x,g(x)=xlnx.(1)求函数f(x)的最大值;(2)设0<<b,证明:g()﹢g(b)﹣<(b﹣)ln2.
已知函数(a,b为常数)且方程f(x)-x+12=0有两个实根为x1="3," x2=4.(1)求函数f(x)的解析式;(2)设k>1,解关于x的不等式;.
已知二次函数的二次项系数为,且不等式的解集为。(1)若方程有两个相等的根,求的解析式;(2)若的最大值为正数,求的取值范围。