若的图象关于直线对称,其中(1)求的解析式;(2)将的图象向左平移个单位,再将得到的图象的横坐标变为原来的2倍(纵坐标不变)后得到的图象;若函数的图象与的图象有三个交点且交点的横坐标成等比数列,求的值.
过点(0,4)、斜率为-1的直线与抛物线交于两点A,B,如果(O为原点)求P的值及抛物线的焦点坐标.
某市旅游部门开发一种旅游纪念品,每件产品的成本是元,销售价是元,月平均销售件.通过改进工艺,产品的成本不变,质量和技术含金量提高,市场分析的结果表明,如果产品的销售价提高的百分率为,那么月平均销售量减少的百分率为.记改进工艺后,旅游部门销售该纪念品的月平均利润是(元). (Ⅰ)写出与的函数关系式; (Ⅱ)改进工艺后,确定该纪念品的售价,使旅游部门销售该纪念品的月平均利润最大
椭圆:的一个焦点,(c为椭圆的半焦距). (1)求椭圆的方程; (2)若为直线上一点,为椭圆的左顶点,连结交椭圆于点,求的取值范围;
设函数在,处取得极值,且. (Ⅰ)若,求的值,并求的单调区间; (Ⅱ)若,求的取值范围.
已知中心在原点的双曲线C的右焦点为(2,0),右顶点为(1)求双曲线C的方程; (2)若直线与双曲线C恒有两个不同的交点A和B,且(其中O为原点). 求k的取值范围.