已知数列的前项和为,若,⑴证明数列为等差数列,并求其通项公式;⑵令,①当为何正整数值时,:②若对一切正整数,总有,求的取值范围.
(本小题满分12分)设函数,曲线过点,且在点处的切线方程为.(Ⅰ)求,的值;(Ⅱ)证明:当时,;(Ⅲ)若当时,恒成立,求实数的取值范围.
(本小题满分12分)如图,抛物线:与椭圆:在第一象限的交点为, 为坐标原点,为椭圆的右顶点,的面积为.(Ⅰ)求抛物线的方程;(Ⅱ)过点作直线交于、 两点,求面积的最小值.
(本小题满分12分)为等腰直角三角形,,,、分别是边和的中点,现将沿折起,使面面,是边的中 点,平面与交于点.(Ⅰ)求证:;(Ⅱ)求三棱锥的体积.
(本小题满分12分)已知数列满足,,令.(Ⅰ)证明:数列是等差数列;(Ⅱ)求数列的通项公式.
(本小题满分12分)设是锐角三角形,三个内角,,所对的边分别记为,,,并且.(Ⅰ)求角的值;(Ⅱ)若,,求,(其中).