(1)已知,且,求的值;(2)已知为第二象限角,且,求的值.
若存在实常数和,使得函数和对其定义域上的任意实数分别满足:和,则称直线为和的“隔离直线”.已知,为自然对数的底数). (1)求的极值; (2)函数和是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.
已知函数. (1)求函数的单调递减区间; (2)若,证明:.
已知为实数, (1)求导数; (2)若,求在[-2,2] 上的最大值和最小值; (3)若在和上都是递增的,求的取值范围.
若椭圆的中心在原点,焦点在轴上,短轴的一个端点与左右焦点、组成一个正三角形,焦点到椭圆上的点的最短距离为. (1)求椭圆的方程; (2)过点作直线与椭圆交于、两点,线段的中点为,求直线的斜率的取值范围.
已知直线与双曲线交于两点, (1)若以线段为直径的圆过坐标原点,求实数的值。 (2)是否存在这样的实数,使两点关于直线对称?说明理由.