某跳水运动员在一次跳水训练时的跳水曲线为如图所示的抛物线一段,已知跳水板长为2m,跳水板距水面的高为3m,=5m,=6m,为安全和空中姿态优美,训练时跳水曲线应在离起跳点m()时达到距水面最大高度4m,规定:以为横轴,为纵轴建立直角坐标系.(1)当=1时,求跳水曲线所在的抛物线方程;(2)若跳水运动员在区域内入水时才能达到压水花的训练要求,求达到压水花的训练要求时的取值范围.
设A是单位圆和x轴正半轴的交点,P,Q是单位圆上两点,是坐标原点,且,. (Ⅰ)若点Q的坐标是,求的值; (Ⅱ)设函数,求的值域.
(本小题满分15分) 已知函数,。 (Ⅰ)求在区间的最小值; (Ⅱ)求证:若,则不等式≥对于任意的恒成立; (Ⅲ)求证:若,则不等式≥对于任意的恒成立。
(本小题满分15分) 如图,椭圆方程为,为椭圆上的动点,为椭圆的两焦点,当点不在轴上时,过作的外角平分线的垂线,垂足为,当点在轴上时,定义与重合。 (Ⅰ)求点的轨迹的方程; (Ⅱ)已知、,试探究是否存在这样的点:点是轨迹内部的整点(平面内横、纵坐标均为整数的点称为整点),且的面积?若存在,求出点的坐标,若不存在,说明理由。
如图,正方形所在平面与圆所在平面相交于,线段为圆的弦,垂直于圆所在平面,垂足是圆上异于、的点,,圆的直径为9 (Ⅰ)求证:平面平面; (Ⅱ)求二面角的平面角的正切值。
.(本小题满分14分) 已知数列的首项,,其中。 (Ⅰ)求证:数列为等比数列; (Ⅱ)记,若,求最大的正整数。