已知圆 M : x + 1 2 + y 2 = 1 ,圆 N : x - 1 2 + y 2 = 9 ,动圆 P 与圆 M 外切并且与圆 N 内切,圆心 P 的轨迹为曲线 C . (Ⅰ)求 C 的方程; (Ⅱ) l 是与圆 P ,圆 M 都相切的一条直线, l 与曲线 C 交于 A , B 两点,当圆 P 的半径最长是,求 A B .
(本小题满分14分)已知等差数列的前四项和为10,且成等比数列 (1)求通项公式 (2)设,求数列的前项和
(本小题满分14分)在△ABC中,是A,B,C所对的边,S是该三角形的面积,且 (1)求∠B的大小; (2)若=4,,求的值.
(本小题满分12分) 已知函数. (Ⅰ)讨论函数在定义域内的极值点的个数; (Ⅱ)若函数在处取得极值,对,恒成立, 求实数的取值范围; (Ⅲ)当且时,试比较的大小.
(本小题满分12分) 已知数列的前项和为,函数, (其中均为常数,且),当时,函数取得极小值.均在函数的图像上(其中是的导函数). (Ⅰ)求的值; (Ⅱ)求数列的通项公式.
(本小题满分12分) 函数在一个周期内的图象如图所示,为图象的最高点,、为图象与轴的交点,且为正三角形。 (Ⅰ)求的值及函数的值域; (Ⅱ)若,且,求的值。