已知曲线 C 1 的参数方程为 x = 4 + 5 c o s t y = 5 + 5 s i n t ( t 为参数),以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系,曲线 C 2 的极坐标方程为 ρ = 2 sin θ 。 (Ⅰ)把 C 1 的参数方程化为极坐标方程; (Ⅱ)求 C 1 与 C 2 交点的极坐标 ( ρ ⩾ 0 , 0 ⩽ θ ⩽ 2 π )
运货卡车以每小时千米的速度匀速行驶130千米(单位:千米/小时).假设汽油的价格是每升2元,而汽车每小时耗油升,司机的工资是每小时14元. (1)求这次行车总费用关于的表达式; (2)当为何值时,这次行车的总费用最低,并求出最低费用的值.
如图,甲船以每小时海里的速度向正北方航行,乙船按固定方向匀速直线航行,当甲船位于处时,乙船位于甲船的北偏西方向的处,此时两船相距海里,当甲船航行分钟到达处时,乙船航行到甲船的北偏西方向的处,此时两船相距海里,问乙船每小时航行多少海里?
(I)已知集合若,求实数的取值范围; (Ⅱ)若不等式,对任意实数都成立,求的取值范围.
在中,已知,求边的长及的面积.
三个数成等比数列,其积为512,如果第一个数与第三个数各减2,则成等差数列,求这三个数.