如图,在 ∆ A B C 中, ∠ A B C = 90 ° , A B = 3 , B C = 1 , P 为 ∆ A B C 内一点, ∠ B P C = 90 ° .
(1)若 P B = 1 2 ,求 P A ; (2)若 ∠ A P B = 150 ° ,求 tan ∠ P B A .
已知抛物线.过动点M(,0)且斜率为1的直线与该抛物线交于不同的两点A、B,. 求的取值范围。
设双曲线的两个焦点分别为,离心率为2. (Ⅰ)求此双曲线的渐近线的方程; (Ⅱ)若、分别为上的点,且,求线段的中点的轨迹方程,并说明轨迹是什么曲线。
已知双曲线与椭圆共焦点,且以为渐近线,求双曲线方程.
F1、F2是的两个焦点,M是双曲线上一点,且,求三角形△F1MF2的面积.
已知抛物线的顶点在原点,对称轴是x轴,抛物线上的点M(-3,m)到焦点的距离等于5,求抛物线的方程和m的值.