已知函数, .(1)若, 函数 在其定义域是增函数,求的取值范围;(2)在(1)的结论下,设函数的最小值;(3)设函数的图象与函数的图象交于点,过线段的中点作轴的垂线分别交、于点、,问是否存在点,使在处的切线与在处的切线平行?若存在,求出的横坐标;若不存在,请说明理由.
甲、乙两地相距s ( km ),汽车从甲地匀速行驶到乙地,速度不得超过c ( km/h ),已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度的平方成正比,比例系数为2, 固定部分为3000元.(1)把全程运输成本(元)表示为速度的函数。(2)为了使全程运输成本最小,汽车应以多大的速度行驶?并求最小运输成本。
在ΔABC中,角A、B、C所对的边分别为a、b、c,且.(1)求的值;(2)若,,求∠C和ΔABC的面积.
已知函数是定义在上的偶函数,当时,(1)求的解析式.(2)讨论函数的单调性,并求的值域.
(文)(本大题满分12分)掷一枚硬币,正、反两面出现的概率都是0.5,把这枚硬币反复掷8次,这8次中的第n次中,假若正面出现,记an=1,若反面出现,记an=-1,令Sn=a1+a2+…+an(1≤n≤8),在这种情况下,试求下面的概率:(1)S2≠0且S8=2的概率;(2)S4=0且S8=2的概率.
(本小题12分)(改编题)(理)四个纪念币、、、,投掷时正面向上的概率如下表所示.
这四个纪念币同时投掷一次,设表示出现正面向上的个数. (Ⅰ)求的分布列及数学期望; (Ⅱ)在概率中,若的值最大,求的取值范围;