已知椭圆()右顶点与右焦点的距离为,短轴长为.(I)求椭圆的方程; (II)过左焦点的直线与椭圆分别交于、两点,若三角形的面积为,求直线的方程.
已知过原点的动直线与圆相交于不同的两点.(1)求线段的中点的轨迹的方程;(2)是否存在实数,使得直线与曲线只有一个交点?若存在,求出的取值范围;若不存在,请说明理由.
已知过点且斜率为的直线与圆交于两点.(1)求的取值范围;(2)若,其中为坐标原点,求.
过点作直线交轴、轴的正半轴于两点,为坐标原点.(1)当的面积为时,求直线的方程;(2)当的面积最小时,求直线的方程.
某高速公路收费站入口处的安全标识墩如图甲所示,墩的上半部分是正四棱锥,下半部分是长方体.图乙、图丙分别是该标识墩的正视图和俯视图.(1)画出该安全标识墩的侧视图,并标出相应的刻度;(2)求该安全标识墩的体积.
如图,在三棱锥中,已知是正三角形,平面,,为的中点,在棱上,且, (1)求证:平面;(2)若为的中点,问上是否存在一点,使平面?若存在,说明点的位置;若不存在,试说明理由;