某校七年级准备购买一批笔记本奖励优秀学生,在购买时发现,每本笔记本可以打九折,用360元钱购买的笔记本,打折后购买的数量比打折前多10本.(1)求打折前每本笔记本的售价是多少元?(2)由于考虑学生的需求不同,学校决定购买笔记本和笔袋共90件,笔袋每个原售价为6元,两种物品都打九折,若购买总金额不低于360元,且不超过365元,问有哪几种购买方案?
如图,在正方形中,,点是边上的任意一点,是延长线上一点,联结,作交的平分线上一点,联结交边于点. (1)求证:; (2)设点到点的距离为,线段的长为,试求关于的函数关系式,并写出自变量的取值范围; (3)当点是线段延长线上一动点,那么(2)式中与的函数关系式保持不变吗?如改变,试直接写出函数关系式.
如图,抛物线经过点,且与轴交于点、点,若. (1)求此抛物线的解析式; (2)若抛物线的顶点为,点是线段上一动点(不与点重合),,射线与线段交于点,当△为等腰三角形时,求点的坐标.
如图,已知是△中的角平分线,是上的一点,且,,. (1)求证:△∽△; (2)求证:△∽△; (3)求的长.
如图,浦西对岸的高楼,在处测得楼顶的仰角为30°,向高楼前进100米到达处,在处测得的仰角为45°,求高楼的高.
如图,在△中,,,点是△内一点,且. (1)求证:△∽△; (2)试求的值.