2013年6月6日第一届南亚博览会在昆明举行.某校对七年级学生开展了“南博会知多少?”的调查活动,采取随机抽样的方法进行问卷调查,问卷调查的结果分为“不太了解”、“基本了解”、“比较了解”、“非常了解”四个等级,对调查结果进行统计后,绘制了如下不完整的条形统计图:根据以上统计图提供的信息,回答下列问题:(1)若“基本了解”的人数占抽样调查人数的25%,此次调查抽取了 学生;(2)补全条形统计图;(3)若该校七年级有600名学生,请估计“比较了解”和“非常了解”的学生共有多少人?
(1)当时,求代数式的值. (2) 已知的值为7 , 求代数式的值
列式并计算:(1)﹣1减去的差乘以﹣7的倒数的积;(2)﹣2、5、﹣9这三个数的和的绝对值比这三个数的绝对值的和小多少?
将0,,,这四个数在数轴上表示出来.并用“<”号连接起来.
已知,如图,抛物线>0)与轴交于点C,与轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB.(1)求抛物线的解析式;(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;(3)若点E在轴上,点P在抛物线上.是否存在以A,C,E,P为顶点且以AC为一边的平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.
小明在课外学习时遇到这样一个问题:定义:如果二次函数与满足,,,则称这两个函数互为“旋转函数”.求函数的“旋转函数”.小明是这样思考的:由函数可知,,,,根据,,,求出,,,就能确定这个函数的“旋转函数”.请参考小明的方法解决下面问题:(1)直接写出函数的“旋转函数”;(2)若函数与互为“旋转函数”,求的值;(3)已知函数的图象与轴交于点A、B两点(A在B的左边),与轴交于点C,点A、B、C关于原点的对称点分别是A1,B1,C1,试证明经过点A1,B1,C1的二次函数与函数互为“旋转函数”。