如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG 的长为
给出下列命题:①反比例函数的图象经过一、三象限,且随的增大而减小;②对角线相等且有一个内角是直角的四边形是矩形;③我国古代三国时期的数学家赵爽,创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明(右图);④相等的弧所对的圆周角相等.其中正确的是( ▲ )
已知点A的坐标为(2,3),O为坐标原点,连结OA,将线段OA绕点O按逆时针方向旋转900得OA1,再将点A1作关于X轴对称得到A2,则A2的坐标为( ▲ )
在平行四边形ABCD中,E为CD上一点,DE:EC=1:2,连接AE、BE、BD,且AE、BD交于点F,则( ▲ )
已知线段a和锐角,求作,使它的一边为a,一锐角为,满足上述条件的大小不同的可以画这样的三角形( )。
一个几何体是由一些大小相同的小正方块摆成的,三视图如图所示,则组成这几何体的小正方块有( )