如图,一次函数y=kx+1(k≠0)与反比例函数(m≠0)的图象有公共点A(1,2).直线l⊥x轴于点N(3,0),与一次函数和反比例函数的图象分别交于点B,C.(1)求一次函数与反比例函数的解析式;(2)求△ABC的面积?
如图,已知Rt△ABC中,∠C=90°,AC=8,BC=6,点P以每秒1个单位的速度从A向C运动,同时点Q以每秒2个单位的速度从A→B→C方向运动,它们到C点后都停止运动,设点P,Q运动的时间为t秒. (1)在运动过程中,求P,Q两点间距离的最大值; (2)经过t秒的运动,求△ABC被直线PQ扫过的面积S与时间t的函数关系式; (3)P,Q两点在运动过程中,是否存在时间t,使得△PQC为等腰三角形?若存在,求出此时的t值;若不存在,请说明理由(≈2.24,结果保留一位小数)
如图,在Rt△ABC中,∠ACB=90°,E是BC的中点,以AC为直径的⊙O与AB边交于点D,连接DE (1)求证:△ABC∽△CBD; (2)求证:直线DE是⊙O的切线.
甲乙两人玩一种游戏:三张大小、质地都相同的卡片上分别标有数字1,2,3,现将标有数字的一面朝下,洗匀后甲从中任意抽取一张,记下数字后放回;又将卡片洗匀,乙也从中任意抽取一张,计算甲乙两人抽得的两个数字之积,如果积为奇数则甲胜,若积为偶数则乙胜. (1)用列表或画树状图等方法,列出甲乙两人抽得的数字之积所有可能出现的情况; (2)请判断该游戏对甲乙双方是否公平?并说明理由.
如图,在 R t △ A B C 中, ∠ A C B = 90 ° , A C = 1 , A B = 2
(1)求作 ⊙ O ,使它过点 A 、 B 、 C (要求:尺规作图,保留作图痕迹,不写作法); (2)在(1)所作的圆中,求出劣弧 B C 的长.
小明从今年1月初起刻苦练习跳远,每个月的跳远成绩都比上一个月有所增加,而且增加的距离相同.2月份,5月份他的跳远成绩分别为4.1m,4.7m.请你算出小明1月份的跳远成绩以及每个月增加的距离.