如图,AB是⊙O的直径,C是⊙0上的一点,直线MN经过点C,过点A作直线MN的垂线,垂足为点D,且∠BAC=∠DAC.(1)猜想直线MN与⊙O的位置关系,并说明理由;(2)若CD=6,cos∠ACD=,求⊙O的半径.
如图,已知A、B、C、D均在已知圆上,AD‖BC,CA平分∠BCD,∠ADC=,四边形ABCD周长为10.(1)求此圆的半径;(2)求圆中阴影部分的面积.
(5分)如图,已知⊙O直径为4cm,点M为弧AB的中点,弦MN、AB交于点P,APM=60°,求弦MN的长.
(5分)
王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线,其中(m)是球的飞行高度,(m)是球飞出的水平距离,结果球离球洞的水平距离还有2m.(1)请求出球飞行的最大水平距离.(2)若王强再一次从此处击球,要想让球飞行的最大高度不变且球刚好进洞,则球飞行路线应满足怎样的抛物线,求出其解析式.
(5分)抛物线的顶点坐标为(1,-4),图象又经过点(2,-3).求(1)抛物线的解析式.(2)求抛物线与一次函数y=3x+11的交点坐标.(3)求不等式>3x+11的解集(直接写出答案).