已知数列的各项均为正数,为其前项和,对于任意的,满足关系式(1)求数列的通项公式;(2)设数列的通项公式是,前项和为,求证:对于任意的正整数,总有.
若向量,其中,设函数,其周期为,且是它的一条对称轴。 (1)求的解析式; (2)当时,不等式恒成立,求实数a的取值范围。
已知函数. (1)求函数的单调递增区间; (2)设的内角的对边分别为a、b、c,若c=,求a,b的值
已知函数 (1)确定在(0,+)上的单调性; (2)设在(0,2)上有极值,求a的取值范围
已知数列{}的前n项和为,数列的前n项和为,为等差数列且各项均为正数, (1)求数列{}的通项公式; (2)若成等比数列,求
在中,若向量且与共线 (1)求角B; (2)若,求的值.