如图,已知切⊙于点E,割线PBA交⊙于A、B两点,∠APE的平分线和AE、BE分别交于点C、D.求证:(Ⅰ); (Ⅱ).
甲与乙两人掷硬币,甲用一枚硬币掷3次,记正面朝上的次数为;乙用这枚硬币掷2次,记正面朝上的次数为。(1)分别求与的期望;(2)规定:若,则甲获胜;若,则乙获胜,分别求出甲和乙获胜的概率.
为了考察某种中药预防流感效果,抽样调查40人,得到如下数据:服用中药的有20人,其中患流感的有2人,而未服用中药的20人中,患流感的有8人。(1)根据以上数据建立列联表;(2)能否在犯错误不超过0.05的前提下认为该药物有效?参考
()
数学试题中有12道单项选择题,每题有4个选项。某人对每道题都随机选其中一个答案(每个选项被选出的可能性相同),求答对多少题的概率最大?并求出此种情况下概率的大小.(可保留运算式子)
某班从6名班干部(其中男生4人,女生2人)中选3人参加学校学生会的干部竞选.(1)设所选3人中女生人数为,求的分布列及数学期望;(2)在男生甲被选中的情况下,求女生乙也被选中的概率.
设数列的前项和为,且…);①证明:数列是等比数列;②若数列满足…),求数列的通项公式。