已知函数().(1)若的定义域和值域均是,求实数的值;(2)若对任意的,,总有,求实数的取值范围.
设函数fn(x)=xn+bx+c(n∈N+,b,c∈R).(1)设n≥2,b=1,c=-1,证明:fn(x)在区间内存在唯一零点;(2)设n=2,若对任意x1,x2∈[-1,1],有|f2(x1)-f2(x2)|≤4,求b的取值范围;(3)在(1)的条件下,设xn是fn(x)在内的零点,判断数列x2,x3,…,xn,…的增减性.
已知椭圆C:的焦距为4,其长轴长和短轴长之比为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设F为椭圆C的右焦点,T为直线上纵坐标不为0的任意一点,过F作TF的垂线交椭圆C于点P,Q.(ⅰ)若OT平分线段PQ(其中O为坐标原点),求的值;(ⅱ)在(ⅰ)的条件下,当最小时,求点T的坐标.
已知数列中,(1)求数列的通项公式;(2)若数列满足数列的前项和为若不等式对一切恒成立,求的取值范围.
如图所示,在四棱锥PABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1. (1)证明:PC⊥AD; (2)求二面角A-PC-D的正弦值.
已知函数的在区间上的最小值为0.(Ⅰ)求常数a的值;(Ⅱ)当时,求使成立的x的集合.