(本小题满分14分)已知椭圆()经过点,离心率为,动点().(1)求椭圆的标准方程;(2)求以(为坐标原点)为直径且被直线截得的弦长为的圆的方程;(3)设是椭圆的右焦点,过点作的垂线与以为直径的圆交于点,证明线段的长为定值,并求出这个定值.
(本小题满分13分)已知定点,,定直线:,动点与点的距离是它到直线的距离的.设点的轨迹为,过点的直线交于、两点,直线、与直线分别相交于、两点。 (1)求的方程; (2)试判断以线段为直径的圆是否过点,并说明理由.
(本小题满分12分)已知数列为等差数列,其中. (1)求数列的通项公式; (2)若数列满足,为数列的前项和,当不等式()恒成立时,求实数的取值范围.
(本小题满分12分)如图,四边形ABCD为梯形,AB∥CD,平面ABCD,,,E为BC中点. (1)求证:平面平面PDE; (2)线段PC上是否存在一点F,使PA//平面BDF?若有,请找出具体位置,并进行证明;若无,请分析说明理由.
(本小题满分12分)某学校有男老师45名,女老师15名,按照分层抽样的方法组建了一个4人的学科攻关小组。 (1)求某老师被抽到的概率及学科攻关小组中男、女老师的人数; (2)经过一个月的学习、讨论,这个学科攻关小组决定选出2名老师做某项实验,方法是先从小组里选出1名老师做实验,该老师做完后,再从小组内剩下的老师中选1名做实验,求选出的2名老师中恰有1名女老师的概率.
(本小题满分12分)已知函数,且满足, (1)求的值; (2)求的最大值.