某商店经销某种洗衣粉,年销售总量为6000包,每包进价2.8元,销售价3.4元.全年分若干次进货,每次进货均为包.已知每次进货运输劳务费为62.5元,全年保管费为元.求:(1) 把该商店经销洗衣粉一年的利润元表示为每次进货量包的函数,并指出这个函数的定义域.(2) 为了使利润最大,每次应该进货多少包?
已知二次函数的二次项系数为,且不等式的解集为。 (1)若方程有两个相等的根,求的解析式; (2)若的最大值为正数,求的取值范围。
函数f(x)=的定义域为A,函数g(x)=的定义域为B。 (1)求A; (2)若BA,求实数a的取值范围。
已知函数, (1)当时,解不等式; (2)若存在,使得成立,求实数的取值范围.
已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的x轴的正半轴重合.设点O为坐标原点, 直线(参数)与曲线的极坐标方程为 (1)求直线l与曲线C的普通方程; (2)设直线l与曲线C相交于A,B两点,证明:0.
如图,AB是⊙O的直径,弦BD、CA的延长线相交于点E,EF垂直BA的延长线于点F. 求证: (1); (2)