某商店经销某种洗衣粉,年销售总量为6000包,每包进价2.8元,销售价3.4元.全年分若干次进货,每次进货均为包.已知每次进货运输劳务费为62.5元,全年保管费为元.求:(1) 把该商店经销洗衣粉一年的利润元表示为每次进货量包的函数,并指出这个函数的定义域.(2) 为了使利润最大,每次应该进货多少包?
已知曲线的极坐标方程为,直线的参数方程是:. (Ⅰ)求曲线的直角坐标方程,直线的普通方程; (Ⅱ)求曲线与直线交与两点,求长.
如图,已知直三棱柱中,,,分别是棱,的中点. (Ⅰ)求证:平面平面; (Ⅱ)求证:平面;
已知数列的前项和为,且是与2的等差中项 ;数列中,,点在直线上。 (Ⅰ) 求数列的通项公式和; (Ⅱ)设,求数列的前n项和
如图,已知椭圆的上顶点为,右焦点为,直线与圆相切. (Ⅰ)求椭圆的方程; (Ⅱ)若不过点的动直线与椭圆相交于、两点,且求证:直线过定点,并求出该定点的坐标
已知数列的前n项和为,且,(n=1,2,3…)数列中,,点在直线上。 (Ⅰ)求数列和的通项公式; (Ⅱ)记,求满足的最大正整数n。