“4·20” 雅安地震后,某商家为支援灾区人民,计划捐赠帐篷16800顶,该商家备有2辆大货车、8辆小货车运送帐篷。计划大货车比小货车每辆每次多运帐篷200顶,大、小货车每天均运送一次。两天恰好运完。(1)求大、小货车原计划每辆每次各运送帐篷多少顶?(2)因地震导致路基受损,实际运送过程中,每辆大货车每次比原计划少运200m顶,每辆小货车每次比原计划少运300顶,为了尽快将帐篷运送到灾区,大货车每天比原计划多跑次,小货车每天比原计划多跑次,一天恰好运送了14400顶,求的值。
如图,抛物线与轴交于,两点,与轴交于点,且. (1)求抛物线的解析式及顶点的坐标; (2)判断的形状,证明你的结论; (3)点是轴上的一个动点,当的值最小时,求的值.
某校九年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作.已知该水果的进价为8元/千克,下面是他们在活动结束后的对话. 小丽:如果以10元/千克的价格销售,那么每天可售出300千克. 小强:如果每千克的利润为3元,那么每天可售出250千克. 小红:如果以13元/千克的价格销售,那么每天可获取利润750元. 【利润=(销售价-进价)销售量】 (1)请根据他们的对话填写下表:
(2)请你根据表格中的信息判断每天的销售量y(千克)与销售单价x(元)之间存在怎样的函数关系.并求y(千克)与x(元)(x>0)的函数关系式; (3)设该超市销售这种水果每天获取的利润为W元,求W与x的函数关系式.当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?
如图,抛物线y=-x2+bx+c与x轴交于A、B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3, (1)求抛物线所对应的函数解析式; (2)求△ABD的面积;
如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B (1)求证:△ADF∽△DEC; (2)若AB=8,AD=6,AF=4,求AE的长.
如图,AC是⊙O的直径,点B,D在⊙O上,点E在⊙O外,∠EAB=∠D=30°. (1)求证:AE是⊙O的切线; (2)当AB=3时,求图中阴影部分的面积(结果保留根号和π).