已知:抛物线C1:y=x2。如图(1),平移抛物线C1得到抛物线C2,C2经过C1的顶点O和A(2,0),C2的对称轴分别交C1、C2于点B、D。(1)求抛物线C2的解析式;(2)探究四边形ODAB的形状并证明你的结论;(3)如图(2),将抛物线C2向下平移m个单位(m>0)得抛物线C3,C3的顶点为G,与y轴交于M。点N是M关于x轴的对称点,点P()在直线MG上。问:当m为何值时,在抛物线C3上存在点Q,使得以M、N、P、Q为顶点的四边形为平行四边形?
某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台.为了配合“双11”优惠促销活动,商场决定采取适当的降价措施,调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台,商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
AB是⊙O的直径,AB=2.点C在⊙O上,∠BAC=60°,P是OB上一点,过P作AB的垂线与AC的延长线交于点Q,连结OC,过点C作CD⊥OC交PQ于点D. (1)求证:△CDQ是等腰三角形; (2)如果△CDQ≌△COB,求BP的长.
阅读下面的材料,回答问题: 解方程x4-5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是: 设x2=y,那么x4=y2,于是原方程可变为y2-5y+4=0①,解得y1=1,y2=4. 当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2; ∴原方程有四个根:x1=1,x2=-1,x3=2,x4=-2. (1)在由原方程得到方程①的过程中,利用 法达到降次的目的,体现了数学的转化思想. (2)解方程:(x2+3x)2+5(x2+3x)-6=0.
如图,在⊙O中,AB、CD是两条弦,OE⊥AB,OF⊥CD,垂足分别为E、F. (1)如果∠AOB=∠COD,那么OE与OF的大小有什么关系?为什么? (2)如果OE=OF,那么与的大小有什么关系?为什么?
如图,O是正六边形ABCDEF的中心,连接BD、DF、FB, (1)设△BDF的面积为S1,正六边形ABCDEF的面积为S2 ,则S1与S2的数量关系是 ; (2)△ABF通过旋转可与△CDB重合,请指出旋转中心和最小旋转角的度数.