某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y(万元)与年产量x(吨)之间的函数关系式可以近视地表示为,已知此生产线的年产量最大为210吨.(Ⅰ) 求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;(Ⅱ)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?
如图,正方体的棱长为,为的中点. (1)求证:AC⊥平面BDD1. (2)求三棱锥的体积;
在等腰中,,顶点为直线与轴交点且平分, 若,求 (1)直线的方程;(2)计算的面积.
已知圆的圆心在直线上,且经过原点及点,求圆的方程.
(满分15分)已知椭圆(a>b>0)的离心率,过点A(0,-b)和B(a,0)的直线与原点的距离为 (1)求椭圆的方程 (2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于CD两点问:是否存在k的值,使以CD为直径的圆过E点?请说明理由
如图,在平行六面体ABCD-A1BC1D1中, 已知:,且,O是B1D1的中点. (1)求的长; (2)求异面直线与所成角的余弦值.